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The properties of the representations of the canonical commutation relations, 
obtained in the prequantization program, are investigated with special attention 
to the relevance of the KMS structures in this context. In particular, we show 
how these structures provide a natural way to pass from the prequantization 
representation of the CCR to the Schrt~dinger representation. 

1. INTRODUCTION AND RESULTS 

The prequantization program was stated in van Hove (1951) as an 
exploration of the possible links between the invariance groups of classical 
and quantum mechanics, respectively; it was later expanded by Souriau 
(1966) and Kostant (1970) to a systematic attempt at the formulation of 
general quantization rules allowing one to pass from classical to quantum 
mechanics; for a comprehensive presentation, see Simms and Woodhouse 
(1976), Guillemin and Sternberg (1977), Sniatycki (1980). 

The first step in this program is to find a canonical, injective, linear 
representation of the Lie algebra ~ of suitably smooth functions on a 
symplectic manifold 9L, by self-adjoint operators acting on a Hilbert space 
~ ,  in such a manner that the classical Poisson bracket is transformed into 
the commutator, familiar in quantum theory, between the corresponding 
operators. 

In particular when the configuration space of the classical system is R n, 
~/L-~ R 2n is its phase space, namely, the cotangent bundle of Rn; for 
typographical simplicity, we write explicit expressions for n = 1, since the 
generalization of the forthcoming remarks to any positive, finite integer n is 
straightforward. 63L comes then naturally equipped with a symplectic form, 
namely, w =dp A dq. The Hamiltonian vector field Xf is then associated to 
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f E C  by X/Jto=-df; and the Poisson bracket between f and g in C is 

( f, g) = --to( Sf, Sg)=OqfOpg-OpfOqg 

To the one-form O=p dq, with dO=to and thus dto =0, one associates the 
covariant derivative Vx and one  verifies that the map P:  f~/ ,  defined by: 

]=--iXV x/+ f 

=:iK( ~qf )~p --iK(apf )~q -p(aef )--Ff 

induces in the space ~C of square integrable functions on cAlL, namely, 
E2(R2", dp dq), a representation of C satisfying 

~( af + flg )=af  + fl~ 

P ( 1 ) = I  

where K is a positive constant, adjustable to be equal to Planck's h/2rr. 
There is then a linear subspace | dense in ~C, on which 

:=- i raq  and O--q+irOp 

are essentially self-adjoint and satisfy the familiar commutation relation 
[p, ~] = -iKI. This representation of the canonical commutation relations is 
not irreducible and thus does not quite realize the so-called Dirac program; 
hence the name prequantization for the map • just described. It is interest- 
ing to note with Streater (1966) that ~C harbors another representation of the 
CC1L namely, 

p=-ixap and (l=p+igOq 

which commutes with both D and ~. The existence of this companion 
representation will appear as a natural consequence of the KMS structures 
to be delineated in the present paper. For the time being we only recall that 
the failure to obtain an irreducible representation is a manifestation of a 
general no-go theorem of which Chemoff gave an enlightening proof, the 
gist of which can be found in Abraham and Marsden (1978). 

The purpose of the present paper is to study the von Neumann algebra 
~ generated by/~ and ~. To avoid dealing with unbounded operators, and 
the attendant domain questions, we note that this algebra is obtained as the 
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closure in the ultraweak topology of the linear span in ~ ( % )  of the unitary 
operators 

defined by 

where 

{ W ( z ) ] z = a + i b E C }  

W ( z ) =  U( a ) V( b ) exp( - iab /2x  ) 

U(a ) = exp ( - i~a/g ) 

V(b ) = exp ( - i@/x ) 

so that 

W(z 1 )W(z  2 ) = W(z,  +z z ) exp[ilm(z'{z 2 ) /2x]  

Our first result is the following: 

Proposition 1. (i) ~ is a factor; (ii) for every faithful normal state q~ on 
~ there exists ~ E %  such that: (a) (~; W ) - - - ( W ~ , ~ )  for every WE~ 
and (b) [6~fO]=0(~=I~ 

The first part of this proposition reads ~ A o-~,= C.I, i.e., the only 
observables in ~ which commute with/~ and ~ are the scalar multiples of 
the trivial observable I. This is reminiscent of the situation encountered in 
the usual (irreducible) SchrOdinger representation. This should nevertheless 
be constrasted with the second part of the proposition, which states that the 
commutant ~ of ~ is rather large since it admits a cyclic vector. For 
completeness we recall (see, e.g., Dixmier, 1957) that a state r on a yon 
Neumann algebra r is a linear, positive functional of r normalized by 
(r  I > = 1 ;  r is said to be normal if it is continuous in the ultraweak 
topology; this is equivalent to the requirement that for every family (F, tt ~ I} 
of mutually orthogonal projectors F,E r F,>=(q~; E,F~>. Hence the 
requirement that a state be normal is the straightforward generalization, to 
the noncommutative context, of the requirement that a measure be com- 
pletely additive. Finally a state r on ~ is said to be faithful if (q~; A ' A ) = 0  
and A E ~ imply A = 0. 

As a consequence of the second part of Proposition 1, we obtain that 
every normal state q, on ~ can be described by a vector ,I' ~ % through the 
formula (tk; W> =(W'I, ,  ,I,) for all WE~ This again is in sharp contradis- 
tinction with the SchrOdinger representation where a general density matrix 
induces a state which cannot be so expressed. Consequently we should 
guard against interpreting vectors in % as pure states on ~ .  
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The fact that the vector r of Proposition 1 is both cyclic (i.e., 
[621~eP]=~) and separating (i.e., A r  and A Er~Lf imply A =0) for 6~ff (the 
latter being a consequence of [~ is central to the purpose of this 
paper. The Tomita-Takesaki theory (see Takesaki, 1970) indeed then as- 
serts that the map 

Sr W(I) E ~-tllep c % ~  W*(I) E ed~(I) c_% 

is closable; its closure is a densely defined, closed antilinear map (denoted 
again by S~,) from which one can define two operators Ar162 and 
Jr162 1/2 with hv self-adjoint and Jr antiunitary such that j2=I;  
jvdp = ~; W ~  Jr162 induces an antilinear isomorphism from 62ff onto 621f'; 
and 

w . . , (  t )[ w ] = ai,,/awa,, /a 

induces a continuous one-parameter group a~(R) of automorphisms of r 
Moreover a,(R) is the only one-parameter group of automorphisms of ~ 
such that for any pair (A, B) of elements of ~ there exists a function FA, B 
analytic in the strip {z Jim z E(0, fl)} and continuous on its boundaries, such 
that for all t ~ R 

FA,B(t) = (th; Aa~,(t)[B]) 

and 

FA,B( t + ifl )=(  q~; a~( t )[ B ]A) 

This is the KMS condition, named after Kubo (1957) and Martin and 
Schwinger (1959). Its relevance in the algebraic formulation of quantum 
statistical mechanics was established by Haag, Hugenholtz, and Winnink 
(1967), while some of the attendant structure had already been isolated by 
Araki and Woods (1963); the general mathematical theory was made 
available by Takesaki (1970). 

For any faithful normal state ~ on ~ (as in Proposition 1), the 
centralizer 63L, of 6"~ with respect to ~ is the von Neumann algebra 

= {A e l(o; [a, W])=0 vWe } 

= {Ae~ V t e R )  

It is then known (see Takesaki, 1972) that there exists a normal conditional 
expectation E from o~ onto o-)~, such that (~ o $=~). For the purpose of 
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interpreting the physical meaning of 91Lo, we consider an arbitrary partition 
o~= {Fk} of the identity I in mutually orthogonal projectors F k in 6y, and 
define for every k the state 

~bk: WE ~-~3"~ (qJ; FkWFk)/(q~; Fk)E C 

Following von Neumann (1932), the effect of the measurement of ~ is to 
change the state ff into the state 

~[q~] = ~ ~kq~g with ~k =(q~; F~) 
k 

r does then coincide (Emch, 1976) with the von Neumann algebra 
generated by all partitions ~- that satisfy ~[q~] = ~. 

Our next result delineates the structure of the centralizer r of the von 
Neumann algebra ~lf associated to the prequantization map @, when ~ is a 
faithful, nondegenerate, normal state on ~ff. We first recall that a v o n  
Neumann subalgebra ~)L of ~d~ is said to be: Abelian if 9L C_ ~)L'; maximal 
Abelian in ~ if 9L - r f3 %'; and atomic (or discrete) if the collection ~ 
all projectors in % is an atomic lattice under the natural ordering E ~ F if 
E ~  C_F~. 

Proposition 2. (i) r is an atomic, maximal Abelian yon Neumann 
subalgebra of 6~; (ii) up to an additive constant aI, there exists a unique 
self-adjoint element/4, E6)]L, such that 

a , ( t  )[ W ] -  exp (iH, t )Wexp(- iH,  t ) 

for all tER and all WE6~If; (iii) with H,  as in (ii) we have 
(a) --(1//3)In h~ =H~, -J~H,J~ 
(b) --(1/fl)lnA~- W~=_[ H~, Wld~ VWE6"~ 
(c) 63L0 = {He}"; 
(d) the spectrum Sp(H~,)=(eili~Z + } of H,  is discrete, simple in M/if, 

and satisfies the condition Zi exp(-/3e~) finite. 

We next indicate how the structures described in these two propositions 
can be exploited to recover the irreducible Schr&linger realization in which 
one usually describes the quantum mechanics of a system with finitely many 
degrees of freedom. As in Souriau (1966) and Kostant (1970) our procedure 
recognizes the role played by some particular choice of a complete set of 
mutually compatible observables. 

Proposition 3. Let ~ be any atomic, maximal Abelian von Neumann 
subalgebra of s~f and f be any normal pure state on C. Then: (i) f admits a 
unique extension to a state ~p on ~ and this state is normal and pure on ~ 



896 Emch 

(ii) with F denoting the minimal projector of d~ determined by ( f ;  F > =  1, 
and %/denoting the non-Abelian von Neumann algebra { X ~  eg I[ X, F ] = 0}, 
then 

~I = { Yc~ff I<, q~; WY> = <~; YW> 

=<r w><r Y> vwe } 

~y D ~ for every maximal Abelian von Neumann subalgebra ~ of eg with 
F E ~ ;  ~ f  is generated by the collection of all such ~ ' s  and the restriction 
of ff to %f is a normal state which is pure and dispersion-free; (iii) there 
exists (I)E% such that: (a) [6~6"~]=%=[e~Lf'(I)]; (b) with xI'=F(I,/IIF(~II: 
<~; W> =(W,I~,~I,) for all WE~21f; 

(c) a= (a [A, w]> =0 vwe } 

and @=OlL, where (~b; W> =(WtI), (I)); (d) there exists a faithful normal 
conditional expectation E from ~ onto % such that 4,oE ='h; (e) with / y 7 
$ =[~ $ is stable under o-~-, and the restriction ~ of ~ to $ provides a 
weakly continuous, irreducible representation of the canonical commutation 
relations. 

von Neumann's (1931) uniqueness theorem then ensures that the rep- 
resentation e/ff s just constructed is (unitarily equivalent to) the SchrOdinger 
representation. 

The antiunitary, involutive operator J .  of the Tomita-Takesaki theory 
allows one in fact to indicate more precisely how $ sits in %, as the 
following result shows. 

Corollary 4. (i) With S defined as in Proposition 3, and ff=J~,$, ff is 
stable under e~,, and the restriction eOf~- of ~ to ff provides a weakly 
continuous, irreducible antirepresentation of the canonical commutation 
relations; (ii) with H s (respectively, H~) denoting the restriction of H,  
(respectively, J, HaJ.) to $ (respectively, ff ), there exists a unitary map U 
from S | ff onto ~ such that 

- (1/ )ln = ) U *  

Finally, to enhance even more the role of the KMS structures in the 
present context one can define, following Araki (1980), the operator S~,r by 

S~,,~: W~ ~%~, W*,I, ~ % 
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which is again closable; denoting by the same symbol Se,,~, its closure, one 
defines the relative modular operator h~,,~, =S~,~,S~,~, which provides an 
alternate procedure to recover the objects discussed in Proposition 3 and 
Corollary 4; one has indeed the following corollary. 

Corollary 5. (i) $ (respectively, ~- ) is the closure in ~ of the range of 
J~A~,,~J~ (respectively, h~,,~,); (ii) with h~, (respectively, A~,) denoting the 
restriction of J~A~,,~J~ (respectively, A~,~,) to $ (respectively, ~ ): 

H s = (1 / f l ) ln  A~, 

H~ : (1/f l) ln A% 

2. PROOFS 

We start from the von Neumann algebra ~Lf acting on ~ =  
~2(R2n, dp dq) and defined as the weak-operator closure of the linear space 
spanned by the operators (W(z)l z E C "), with z = a + ib, and 

[ W( z )gl]( p, q )=exp[- ib(  q -a /2 ) / x ]  XP( p+ b, q - a  ) 

One checks indeed easily that with a, b~R" 

and 

which satisfy 

U ( a ) :  W ( a ) : e x p ( - i p a / x )  

V(b)=  W( ib ) = e x p ( - i @ / r  ) 

U( a )V( b )--- V( b )U( a )exp( iab/r ) 

so that ~ is the von Neumann algebra associated to a representation of the 
canonical commutation relations on R". We now prove that this von 
Neumann algebra admits at least one cyclic and separating vector. For this 
purpose, consider with/~ and 1, positive: 

�9 ~,,(p,q)=(~v/~r 2 )'/4 e x p [ -  (/~p2 + vq 2 ) /2]  

We have then 

( v( a ) , , ,  )( p, q )=  (~p/~2) ' / 'exp(-  ~ p2/2)exp[- p( q -  a )S/Z] 
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Since 

span (exp[-I~(p+b)2/2][beRn)=E~(R',dp) 

every square-integrable function of the form exp[-i~p2/2]f(q) can be 
approximated by linear combinations of elements of the form 
[U(a)C~](p, q). So is it in particular the case for 

with g arbitrary in ~2(Rn, dq). 

with 

span (exp,,[-/~ ( p + b ) 2 / 2 ] [ b e R n ) = ~ 2 ( R " ,  dp ) 

then implies that [~lfC,~]=~, i.e., C,~ is cyclic in ~ with respect to 6~6". 
Upon computing f~(z)=(W(z)C~,~, ~ )  one notices that one can adjust/~ 
and I, in such a manner that f~ =fo, where 

fo(z )---- exp[-- 0 (a 2 + b2 )/4K] 

in fact we have then I, = O/K and # = (t92 _ 1)/x| the square-integrability 
of C~,, i.e., #, 1, positive, implies that one can write without loss of generality 

19 =coth(flK/2) with f l ~ ( 0 , ~ )  

Let C o denote the vector C,~ with these values of # and 1,, and note that 

( 2co,co):(02co,,o)= o/2 
Actually it is easily verified that fo is the canonical equilibrium functional 
(cf., e.g., Emch, 1972) at the natural temperature fl for the harmonic 
oscillator, and can be written in the SchrOdinger representation as 

fo( z )= TrpoWo( z ) 

PO = exp( -- flH o)/Tr exp( -- flH o) 

where H 0 is the usual harmonic oscillator Hamiltonian in that representa- 
tion. Consequently Po describes a faithful normal state on ~ ( ~ o )  and 

w e  r c 

Emela 

exp ( -#p2 /2 )exp( ibq /x )g (q )  
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is a faithful normal state on ~ which appears thus as an ultrawealdy 
continuous, faithful representation of ~ ( ~ 0 ) -  As abstract W* algebras 
and ~ ( % 0 )  are therefore isomorphic, although they are evidently not  

unitarily equivalent when considered as concrete von Neumann algebras. (Po 
faithful then implies that (I) o is separating for r and we have thus 
produced a cyclic separating vector for ~ in %. 

As a consequence (see, e.g., Dixmier, 1957) of this result, every normal 
state on ~ is a vector state. In particular, for every faithful normal state 
on ~ there exists a vector �9 in 3C, which is both cyclic and separating for 
6~f (i.e., [s/tf~5]=~=[S~lf'qs]), such that (0;  W)=(WqS,  ~ )  for all WEe/If. 

Since ~ ( ~ 0 )  is irreducible, it is a factor, i.e., its center consists of the 
multiples of the identity; this property carries over to ~ since the latter, 
considered as an abstract W* algebra (with unit!), is isomorphic to ~5(%0). 
Hence ~ is a factor. An alternate way to prove this, as a consequence of the 
existence of an ultraweakly continuous isomorphism ~r0: r ~ , is to 
remark that ~oo~ro I is the only (normal) KMS state on 63(%0) for the 
natural temperature fl and the evolution corresponding to the harmonic 
oscillator. 4~o is therefore extremal KMS and consequently ~ is a factor. 

This concludes the proof of Proposition 1. Note that the harmonic 
oscillator only played a role as a convenient intermediary step in the proof: 
the proposition itself has indeed been shown to hold for every faithful 
normal state ~ on ~ 

With q~ any faithful, nondegenerate, normal state on ~ and % an 
ultraweakly continuous isomorphism from ~lf onto ~ ( % 0 )  we have that 
4~o~ro ~ is a faithful, nondegenerate, normal state on ~ ( % 0 )  and we can 
therefore write 

(q,; w )  = Tro -o(W) V W e  

with 

o, = Ex  0(ek) 
k 

where 

( o(e )lk Z § ) 

is a partition of the identity on ~ o  into mutually orthogonal one-dimensional 
projectors, 

X k ~ ( 0 , 1 )  v k ~ Z  + 
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and 

~Ak=l; 
k 

k ~ l implies Ak ~ ~'/ 

We can now define H ,  ~~ by ~ ro (H, )=- (1 / f l ) lnp , .  One then checks 
easily that ~ satisfies the KMS condition at the natural temperature/3, with 
respect to the evolution 

%( t )[ W ]=eiH§ t 

and that H ,  is defined uniquely, up to an additive constant, by this 
condition, as a consequence of a/fi'A ~ = C. L 

Since the spectrum of %(H, )  is discrete and nondegenerate, we have 
( , to(H,)) '=  {fro(H,)}", and thus the centralizer a)L, of ~ is an atomic, 
maximal Abelian yon Neumann subalgebra of ~ This proves parts (i), (ii), 
(iiic), and (iiid) of Proposition 2. 

To continue following as explicit a path as is possible, we notice that 
~=E2(R2n,  dp dq) is naturally isomorphic to the space of Hilbert-Schmidt 
operators on ~0  =~2( Rn, dx). Let then ( ~ k [ k ~ Z  + } be the orthonormal 
basis in ~0  determined by *ro(Pk)~ t -=Skl~l; let further ~kt be the corre- 
sponding orthonormal basis in ~ .  One then verifies easily that 

k 

Jr162 = dgtk 

from which the remainder of Proposition 2 follows by a straightforward 
computation. 

Conversely, let d~ and f be as in Proposition 3. Since ~r 0 is a normal 
isomorphism, fo 1to I is a pure, normal state on *r0(~ ) which is an atomic, 
maximal Abelian von Neumann subalgebra of �9 ( ~ 0 ) =  1to( ~ ) "  Moreover 
determines, via r '' a partition of the identity on ~o  into 
mutually orthogonal projectors (~r0(Pk) [ k E Z + ). Since fo ,r o i is normal, 
there exists at least some k for which ( f ;  P k ) ~ 0 ;  and sincefis  pure, there 
exists exactly one Pk, which we write F, such that ( f ;  Pk)= 1. By the 
Halm-Banach theorem, there exists at least one extension of fo fro ~ to a 
state ~o on ~(Ho),  and this state can be written uniquely (see for instance 
Dixmier, 1957) as w=o~l+602 with to I ultraweakly continuous and ~02 
annihilating the compact operators on 5C0; moreover II ~0 II = II ~0~ II + II ~02 II. In 
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particular 

(~o, ~  F ) - ( w  o ~r0; F)=~f ;  F ) =  1 

and thus I[ ~01 [I-  1 positive. Since however o~ is a state, II o~ I[ = 1 and thus 
II o~2 II = 0 =  o~ 2, i.e., ~ is normal. It is then easily checked that co is pure and 
is uniquely determined by its restriction to ~ro(~). This part of the argument 
can be found already in Kadison and Singer (1959) where counterexamples 
are exhibited to show the importance of the discreteness of ~ [for the role of 
normality and an up-dated discussion of the general extension problem, see 
also Anderson (1980) and references quoted therein]. Upon using the 
isomorphism ~r0, we conclude that ~ = o~ o ~ro ~ is the unique state extension 
of f to ~ ,  and that it is pure and normal, thus proving part (i) of 
Proposition 3. Part (i_i) of that proposition is then again verified when one 
reads it, through ~r0, as a statement in ~ ( ~ 0 ) .  The faithful normal state ~ of 
part (iii) is obtained as follows. Choose {eklkEZ +} C R such that ek=/=e ! 
whenever k=~ l, and Y~kexp(-- flek) finite; form then H =  ~kekPk and 

p = e x p [ - - f l ~ r o ( H ) ] / T r e x p [ - f l ~ r o ( H ) ]  

and define ~ by (q~; W ) = T r p % ( W ) .  Since this state is faithful, nondegen- 
erate, and normal, we can use Proposition 1 to assert the existence of ~b 
satisfying (iiia). Part (iiib) of Proposition 3 then follows from 

(~p; W) = (ep; FWF)/(ep; F) V W~ 

Part (i_tic) asserts, in agreement with Proposition 2, that ~=r a fact 
which is easily verified when one reads this, via ~r0, as a statement in ~(%0)-  
Since %f is stable under the modular group a~,(R), we know from Takesaki 
(1972) that there exists a faithful normal conditional expectation, i.e., an 
ultraweakly continuous projection Ef of norm 1, from ~ onto %f, such that 
q> o E! = q~. Finally + pure and normal on ~ implies (iiie), thus completing 
the proof of Proposition 3. 

The two corollaries are easily derived as consequences of the main 
propositions, upon using the isomorphisms described in the above proofs. In 
particular, the relative modular operator A~,~, is given explicitly, in the basis 
introduced in the proof of Proposition 2, by 

A ~,~kl  = ~7 l~kOe~Ol 
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3. CONCLUDING REMARKS AND SPECULATIONS 

(1) The elementary character of the proofs presented in Section 2 
emphasizes the immediacy of the KMS structures underlying the primary 
(respectively, irreducible) representations ~ (respectively, 62ff$) of the canon- 
ical commutation relations obtained from the prequantization procedure. 
No claim is laid on the originality of the separate ingredients appearing in 
these proofs: much of these has been adapted from the fundamental papers 
on the algebraic formulation of the KMS condition. The point rather was to 
use as simple a language as possible to bring these structures in contact with 
another area of mathematical physics: the geometric quantization program. 

(2) The appearance of concepts from statistical mechanics (namely, the 
KMS condition and, through it, the natural temperature fl) in the descrip- 
tion of ~ should be compared to the fact that the positive smooth functions 
of C appear in classical mechanics not only as observables, and as genera- 
tors (via the Poisson bracket) of one-parameter groups of diffeomorphisms, 
but also as Radon-Nikodym derivatives of measures which are absolutely 
continuous with respect to the measure dp dq associated to the two-form o~. 
These smooth measures play in classical mechanics the same role as that 
played in quantum mechanics by the normal states on 62ff. The special role 
played by the faithful normal states should thus be compared to that played 
by the smooth measures whose null sets coincide with the null sets of dp dq, 
i.e., the measures of the form exp[-flf(p, q)]dp dq. 

(3) The fact that % harbors operator realizations of both classical 
mechanics (namely, ~) and quantum mechanics (namely, o-~ff) illustrates the 
seminal argument originally put forward by Born and Jordan (1925) that 
the Heisenberg (1925) formulation of quantum mechanics involves changing 
the rules by which one forms functions, and in particular products and even 
powers, of observables. 

(4) The splitting of % into S | ~ and the attendant extraction of the 
irreducible representation ~ from the primary representation ~ based as 
it is on a choice of an atomic, maximal Abelian von Neumann subalgebra d~ 
of Qf, should be compared to the Lagrangian foliation (see Kostant, 1970; 
Souriau, 1966; Weinstein, 1971), which plays a central role in the geometric 
quantization programme (see, e.g., Guillemin and Sternberg, 1977; Simms 
and Woodhouse, 1976; Sniatycki, 1980). 

One should also note the simultaneous presence, together with the 
irreducible representation ~ of the irreducible antirepresentation ~ = 
J~ which we extracted from ~ The KMS structures delineated in the 
present paper thus also add some new perspective to the investigations 
reported in Segal (1960), Klauder (1964), Streater (1966) (and thus 
Bargmann, 1961). 
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One might further want to explore the connection between these 
structures and the work of Borchers (1973). Indeed the representation ~ of 
the CCR, discussed in the present paper as pertaining to the prequantization 
program, also coincide with the representation of the CCR obtained by 
constructing the regular representation of the cross-product (see, e.g., 
Pedersen, 1979) associated to the dynamical system (d~, R ~, a} where ~ is 
the von Neumann algebra generated by the operators (V0(b)l b ER'} de- 
fined by 

(Vo(b )9 )(p)-'-9(p+b ) 

acting on ~0 : ~ 2 (  Rn,  alp); and a is the homomorphism Rn~,Aut(d~) de- 
fined by 

aa[ Vo( b ) ] : e x p (  iab / r  ) Vo( b ) 

We have indeed 

~:{gl:Rn~ofdqllg(q)"~o finite) 

[V(b)~](q):a-q[Vo(b)]~t'(q) 

[U(a)9](q)=9(q-a) 
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